
Q. NO:- 1

a. Explain with an example the system software.
Ans:- System software encompasses various components that manage and facilitate the
operation of a computer system. One prominent example is the operating system (OS).
Let's consider Linux as an example of system software. Linux serves as the kernel, the core
component of the operating system, responsible for managing hardware resources and
providing essential services to applications.

b. Discuss the program loading and execution in systems programming.
Ans:- Program loading and execution in systems programming involve several steps:
1. Compilation:- The source code of a program is written in a high-level programming
language like C or C++. This code is then compiled into machine-readable instructions by a
compiler, producing an executable file.
2. Linking:- If the program relies on external libraries or modules, the linker combines the
compiled code with these libraries to create a single executable file.
3. Loading:- When a user initiates the execution of a program, the operating system loads the
executable file into memory. This involves allocating memory space for the program's code,
data, and stack.
4. Execution:- Once the program is loaded into memory, the CPU begins executing its
instructions sequentially. The program interacts with the operating system and hardware
devices as needed, performing its intended tasks.
5. Termination:- When the program completes its execution or encounters an error, it
terminates. The operating system deallocates the memory resources used by the program and
releases any other system resources it may have acquired.

c. Explain the following core subsystems of the Linux kernel.
Ans:- The core subsystems of the Linux kernel include:-
1. Process Scheduler:- The process scheduler is responsible for determining which processes
(programs) should run and for how long they should be allowed to execute on the CPU. It
manages the CPU's time-sharing among multiple processes, ensuring efficient utilization of
system resources and responsiveness to user interactions.
2. Memory Management Unit (MMU):- The MMU handles memory allocation and virtual
memory management. It translates virtual memory addresses used by processes into physical
memory addresses, allowing the operating system to manage memory efficiently. The MMU
also implements features like memory protection, which prevents processes from accessing
memory regions allocated to other processes.
3. Virtual File System (VFS):- The VFS provides an abstraction layer that allows the Linux
kernel to support various file systems, such as ext4, NTFS, and FAT32, in a uniform manner.
It presents a consistent interface for interacting with files and directories regardless of the
underlying file system type. This abstraction simplifies file system management and
facilitates interoperability between different types of storage devices and file systems.

Ans:

Q. No:- 2

a. Describe the Linux Shell with an example.
Ans:- The Linux shell is a command-line interface (CLI) that interprets user commands and
executes them. It provides a way for users to interact with the operating system by typing
commands and receiving immediate feedback. One of the most commonly used Linux shells
is Bash (Bourne Again Shell).
Here's an example of using the Linux shell:

$ ls -l
In this example, the `ls` command lists the contents of the current directory, and the `-l`
option specifies the long listing format. When you execute this command in the shell, it
displays detailed information about the files and directories in the current directory.

b. Explain FOUR (4) ways of variable declaration in Shell script.
Ans:- Four ways of variable declaration in Shell script:
1. Implicit Declaration:- Variables can be declared implicitly by assigning a value to them
without explicitly declaring their data type.
For example:

myVar="Hello"

2. Explicit Declaration:- Variables can be explicitly declared using the `declare` or `typeset`
built-in commands. This allows specifying attributes such as data type and scope.
For example:

declare -i num=5 # Declares an integer variable

3. Using `read` Command:- Variables can be declared interactively by prompting the user to
input a value using the `read` command.
For example:-
 echo "Enter your name:"
 read name

4. Command Substitution:- Variables can be assigned the output of a command using
command substitution.
For example:-
 currentDate=$(date +%Y-%m-%d)

c. Write a Shell script to get three integers from the user and give output as a sum of
three values.
Ans:- Shell script to get three integers from the user and output the sum:-

#!/bin/bash

Prompt the user to enter three integers
echo "Enter three integers: "
read num1
read num2
read num3

Calculate the sum of the three integers
sum=$((num1 + num2 + num3))

Display the sum
echo "The sum of $num1, $num2, and $num3 is: $sum"

d.

Ans:-
#!/bin/bash

Assigning values to variables
var1="bar"
var2="fud"
num="43"

Printing the values
echo "$var1"
echo "$var2"
echo "$num"

Q. No:- 3

a.

Ans:- The following system calls are used for basic process management.
Fork:- A parent process uses fork to create a new child process. The child process is a copy of
the parent. After fork, both parent and child executes the same program but in separate
processes.
Exec():- Replaces the program executed by a process. The child may use exec after a fork to
replace the process’ memory space with a new program executable making the child execute a
different program than the parent.
Exit():- Terminates the process with an exit status.
Wait():- The parent may use wait to suspend execution until a child terminates. Using wait the
parent can obtain the exit status of a terminated child.

b. Explain the two(2) ways of process termination in operating system.
Ans:- In an operating system, processes can terminate in two main ways:
1. Normal Termination:- A process terminates normally when it completes its execution and
exits voluntarily. This could happen when the process reaches the end of its code, explicitly
calls an exit system call, or returns from the main function. Upon normal termination, the
operating system typically performs cleanup tasks associated with the process, such as
releasing allocated memory and closing open files.
2. Abnormal Termination:- A process terminates abnormally when it encounters an error or
exception during its execution. This could occur due to various reasons such as division by
zero, accessing invalid memory, or encountering a critical error condition. When a process
terminates abnormally, the operating system may generate an error message or perform other
actions depending on the specific circumstances. Additionally, the operating system might
attempt to clean up any resources associated with the terminated process to prevent resource
leaks or other issues.

Ans:- Here's a C program that prints "Hello World!" eight times, similar to the output in
Figure 4:

#include <stdio.h>

int main() {
 int i;

 // Loop to print "Hello World!" eight times
 for (i = 0; i < 8; i++) {
 printf("Hello World!\n");
 }

 return 0;

}

d. Write a C Program that prints the process you’re running, the process another user is
running , or all the processes on the system.
Ans:-
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <dirent.h>
#include <string.h>

int main() {
 DIR *dir;
 struct dirent *entry;

 // Open the /proc directory
 dir = opendir("/proc");
 if (dir == NULL) {
 perror("opendir");
 exit(EXIT_FAILURE);
 }

 // Read each entry in the /proc directory
 while ((entry = readdir(dir)) != NULL) {
 // Check if the entry is a directory and represents a process ID
 if (entry->d_type == DT_DIR && atoi(entry->d_name) != 0) {
 char filename[256];
 FILE *fp;
 char buf[1024];

 // Construct the file path for the process status file
 sprintf(filename, "/proc/%s/status", entry->d_name);

 // Open the process status file
 fp = fopen(filename, "r");
 if (fp == NULL) {
 perror("fopen");
 continue;
 }

 // Read the process name from the status file
 while (fgets(buf, sizeof(buf), fp) != NULL) {
 if (strncmp(buf, "Name:", 5) == 0) {
 printf("Process ID: %s, Name: %s", entry->d_name, buf + 6);
 break;
 }
 }

 // Close the process status file
 fclose(fp);
 }

 }

 // Close the /proc directory
 closedir(dir);

 return 0;
}

Q. NO:- 4
a. Discuss the concept of files in Linux file system with an example of the files system
hierarchy.
Ans:- In the Linux file system, files are fundamental units of data storage that contain
information organized into bytes. Each file is identified by a unique name within its directory
and is associated with various attributes such as permissions, ownership, size, and
timestamps. The Linux file system follows a hierarchical structure, starting from the root
directory ("/") and branching into subdirectories. Directories can contain files and other
directories, forming a tree-like structure.

Root directory ("/"):- The root directory is the top-level directory in the file system
hierarchy. It serves as the parent directory for all other directories and files.
Subdirectories:- Directories within the file system hierarchy contain files and possibly more
subdirectories. For example, the "bin", "etc", "home", and "var" directories are subdirectories
of the root directory.
Files:- Files contain data organized into bytes. They can be of various types, such as text
files, executable files, directories, symbolic links, and device files. For instance, "ls",
"mkdir", "passwd", and "hosts" are files within their respective directories.
Directory structure:- Directories can have nested structures, containing subdirectories and
files. For example, the "home" directory contains subdirectories for different users ("user1",
"user2"), each of which contains files specific to that user ("file1.txt", "file2.txt").

b. Explain the usage of the following initial permissions parameters in Linux file system
Ans:- The initial permission parameters in Linux file systems are used to define the initial
access permissions for files and directories when they are created. These parameters are
typically used with functions like open() or mkdir() to specify the permissions for the file or
directory. Here's an explanation of each parameter:

1. S_IRUSR:- This parameter represents read permission for the owner (user) of the file.
When set, it allows the owner to read the contents of the file.
2. S_IWUSR:- This parameter represents write permission for the owner (user) of the file.
When set, it allows the owner to modify or delete the file.
3. S_IXGRP:- This parameter represents execute permission for the group associated with
the file. When set, it allows members of the group to execute the file if it is a program or
script.
4. S_IWOTH:- This parameter represents write permission for others (users not in the owner
group or not the owner). When set, it allows users who are not the owner or members of the
group to modify or delete the file.
5. S_IXOTH:- This parameter represents execute permission for others (users not in the
owner group or not the owner). When set, it allows users who are not the owner or members
of the group to execute the file if it is a program or script.

c. Explain the following library functions for file system
Ans:-
1. fopen()

Purpose:- fopen() is used to open a file and associate it with a stream, allowing
further operations like reading or writing to the file.
Syntax:- FILE *fopen(const char *filename, const char *mode);

filename:- A string representing the name of the file to be opened.
mode:- A string indicating the mode in which the file should be opened, such
as "r" for reading, "w" for writing (creating a new file or overwriting existing
content), "a" for appending, etc.

Return Value:- If successful, `fopen()` returns a pointer to a `FILE` object
representing the opened file. If an error occurs, it returns NULL.
Example:-
 FILE *fp = fopen("example.txt", "r");
 if (fp == NULL) {
 perror("Error opening file");
 exit(EXIT_FAILURE);
 }

2. fread()
Purpose:- fread() is used to read data from a file into a buffer.
Syntax:- size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

ptr:- A pointer to the buffer where the data will be read into.
size:- The size in bytes of each element to be read.
nmemb:- The number of elements to read.
stream:- A pointer to the `FILE` object representing the file to read from.

Return Value:- The number of elements successfully read. If an error occurs or the
end of file is reached before any data is read, it returns zero or a value less than
`nmemb`.

Example:-
 char buffer[100];
 size_t bytes_read = fread(buffer, sizeof(char), 100, fp);

3. fwrite()
Purpose:- fwrite() is used to write data from a buffer into a file.
Syntax:- size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

ptr:- A pointer to the buffer containing the data to be written.
size:- The size in bytes of each element to be written.
nmemb:- The number of elements to write.
stream:- A pointer to the `FILE` object representing the file to write to.

Return Value:- The number of elements successfully written.
Example:-
 char buffer[] = "Hello, world!";
 size_t bytes_written = fwrite(buffer, sizeof(char), strlen(buffer), fp);

4. fflush()
Purpose:- fflush() is used to flush the output buffer associated with a stream.
Syntax:- int fflush(FILE *stream);

stream:- A pointer to the `FILE` object representing the stream to be flushed.
Return Value:- 0 If successful, `fflush()` returns zero. If an error occurs, it returns
EOF.
Example:-
 int result = fflush(fp);

d. Write an example of the syntax for the library functions in Question 4(c).
Ans:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {
 // Open a file for writing
 FILE *fp = fopen("example.txt", "w");
 if (fp == NULL) {
 perror("Error opening file");
 exit(EXIT_FAILURE);
 }

 // Write data to the file
 char data[] = "Hello, world!";
 size_t bytes_written = fwrite(data, sizeof(char), strlen(data), fp);
 if (bytes_written != strlen(data)) {
 perror("Error writing to file");
 exit(EXIT_FAILURE);
 }

 // Flush the output buffer
 int flush_result = fflush(fp);

 if (flush_result == EOF) {
 perror("Error flushing buffer");
 exit(EXIT_FAILURE);
 }

 // Close the file
 int close_result = fclose(fp);
 if (close_result != 0) {
 perror("Error closing file");
 exit(EXIT_FAILURE);
 }

 // Open the file for reading
 fp = fopen("example.txt", "r");
 if (fp == NULL) {
 perror("Error opening file");
 exit(EXIT_FAILURE);
 }

 // Read data from the file
 char buffer[100];
 size_t bytes_read = fread(buffer, sizeof(char), 100, fp);
 if (bytes_read == 0) {
 perror("Error reading from file");
 exit(EXIT_FAILURE);
 }

 // Print the data read from the file
 printf("Data read from file: %s\n", buffer);

 // Close the file
 close_result = fclose(fp);
 if (close_result != 0) {
 perror("Error closing file");
 exit(EXIT_FAILURE);
 }

 return 0;
}

